Fits a radial IVW multivariable Mendelian randomization model using first order weights.
Arguments
- r_input
A formatted data frame using the
format_rmvmr
function or an object of classMRMVInput
fromMendelianRandomization::mr_mvinput
- summary
A logical argument (
TRUE
orFALSE
) indicating whether a summary of results should be presented (default=TRUE
).
Value
An dataframe containing MVMR results, including estimated coefficients, their standard errors, t-statistics, and corresponding (two-sided) p-values.
References
Spiller, W., et al., Estimating and visualising multivariable Mendelian randomization analyses within a radial framework. Forthcoming.
Examples
# Example using format_rmvmr formatted data
f.data <- format_rmvmr(
BXGs = rawdat_rmvmr[,c("ldl_beta","hdl_beta","tg_beta")],
BYG = rawdat_rmvmr$sbp_beta,
seBXGs = rawdat_rmvmr[,c("ldl_se","hdl_se","tg_se")],
seBYG = rawdat_rmvmr$sbp_se,
RSID = rawdat_rmvmr$snp)
ivw_rmvmr(f.data, TRUE)
#>
#> Radial Multivariable MR
#>
#> Estimate Std. Error t value Pr(>|t|)
#> exposure1 -0.021845534 0.01417258 -1.5413941 0.1254465
#> exposure2 0.003735376 0.01033780 0.3613319 0.7183884
#> exposure3 0.025570592 0.01601916 1.5962501 0.1126561
#>
#> Residual standard error: 2.197 on 142 degrees of freedom
#>
#>
# Example using MRMVInput formatted data from the
# MendelianRandomization package
if (require("MendelianRandomization", quietly = TRUE)) {
bx <- as.matrix(rawdat_rmvmr[,c("ldl_beta", "hdl_beta", "tg_beta")])
bxse <- as.matrix(rawdat_rmvmr[,c("ldl_se", "hdl_se", "tg_se")])
dat <- MendelianRandomization::mr_mvinput(bx = bx,
bxse = bxse,
by = rawdat_rmvmr$sbp_beta,
byse = rawdat_rmvmr$sbp_se,
snps = rawdat_rmvmr$snp)
ivw_rmvmr(r_input = dat, summary = TRUE)
}
#>
#> Radial Multivariable MR
#>
#> Estimate Std. Error t value Pr(>|t|)
#> exposure1 -0.021845534 0.01417258 -1.5413941 0.1254465
#> exposure2 0.003735376 0.01033780 0.3613319 0.7183884
#> exposure3 0.025570592 0.01601916 1.5962501 0.1126561
#>
#> Residual standard error: 2.197 on 142 degrees of freedom
#>
#>