Reads in summary data. Checks and organises columns for use in calculating multivariable Mendelian Randomization analyses. Where variant IDs are not provided, a vector is generated for variant identification.
Arguments
- BXGs
A matrix containing beta-coefficient values for genetic associations with the each exposure. Columns should indicate exposure number, with rows representing estimates for a given genetic variant.
- BYG
A numeric vector of beta-coefficient values for genetic associations with the outcome.
- seBXGs
A matrix containing standard errors corresponding to the matrix of beta-coefficients
BXGs
.- seBYG
A numeric vector of standard errors corresponding to the beta-coefficients
BYG
.- RSID
A vector of names for genetic variants included in the analysis. If variant IDs are not provided (
RSID="NULL"
), a vector of ID numbers will be generated.
References
Spiller, W., et al., Estimating and visualising multivariable Mendelian randomization analyses within a radial framework. Forthcoming.
Examples
f.data <- format_rmvmr(
BXGs = rawdat_rmvmr[,c("ldl_beta","hdl_beta","tg_beta")],
BYG = rawdat_rmvmr$sbp_beta,
seBXGs = rawdat_rmvmr[,c("ldl_se","hdl_se","tg_se")],
seBYG = rawdat_rmvmr$sbp_se,
RSID = rawdat_rmvmr$snp)
names(f.data)
#> [1] "SNP" "betaYG" "sebetaYG" "betaX1" "betaX2" "betaX3" "sebetaX1"
#> [8] "sebetaX2" "sebetaX3"
class(f.data)
#> [1] "data.frame" "rmvmr_format" "mvmr_format"