A function which restructures summary GWAS data for downstream two-sample Mendelian randomization analyses. Where variant identification numbers are not provided, an index vector is generated corresponding to the ordering of variants provided.
Arguments
- BXG
A numeric vector of beta-coefficient values for genetic associations with the first variable (exposure).
- BYG
A numeric vector of beta-coefficient values for genetic associations with the second variable (outcome).
- seBXG
The standard errors corresponding to the beta-coefficients
BXG
.- seBYG
The standard errors corresponding to the beta-coefficients
BYG
.- RSID
A vector of names for genetic variants included in the analysis. If variant IDs are not provided (
RSID = "NULL"
), a vector of ID numbers will be generated.
Value
The function provides a data frame containing the following columns:
SNP
The identification number for each variant
beta.exposure
The association estimate for the genetic variant with respect to the exposure
beta.outcome
The association estimate for the genetic variant with respect to the outcome
se.exposure
The standard error for the variant-exposure association
beta.exposure
se.outcome
The standard error for the variant-outcome association
beta.outcome
References
Bowden, J., et al., Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. International Journal of Epidemiology, 2018. 47(4): p. 1264-1278.
Examples
ldl.dat <- data_radial[data_radial[,10]<5e-8,]
ldl.fdat <- format_radial(ldl.dat[,6], ldl.dat[,9],
ldl.dat[,15], ldl.dat[,21], ldl.dat[,1])
head(ldl.fdat)
#> SNP beta.exposure beta.outcome se.exposure se.outcome
#> 1 rs10903129 -0.033 -0.012 0.003692528 0.01366904
#> 2 rs1998013 -0.380 -0.150 0.021953470 0.09647707
#> 3 rs4587594 -0.049 0.017 0.003842235 0.01509245
#> 4 rs6603981 0.034 0.012 0.004444080 0.01698989
#> 5 rs646776 0.160 0.094 0.004375672 0.01724356
#> 6 rs1010167 -0.025 -0.028 0.003969023 0.01897288
class(ldl.fdat)
#> [1] "data.frame" "rmr_format"