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Motivation

One of the key assumptions of any Mendelian randomisation (MR) analysis is that the exposures are strongly
predicted by the set of SNPs used as instruments. In multivariable MR (MVMR) this assumption requires
that each exposure is strongly predicted by the SNPs included conditional on the predicted value of the
other exposures in the model. Many of the traits considered in the NMR data here are associated with
highly overlapping groups of SNPs and therefore it is particuarly important with data of this type to consider
whether these exposures can be reliably predicted by the set of SNPs if multiple traits from this data are
going to be included as exposures in an MVMR analysis.

Here I consider whether multiple traits in this dataset can be predicted at the same time. If a group of
exposures can all be strongly predicted by the set of SNPs then, assuming the other instrumental variable
assumptions are satisfied, it will be possible to estimate the direct effect of each exposure on an outcome.
However, if some or all of the exposures are weakly predicted then any MR analysis including those exposures
will be subject to weak instrument bias.

Data

We use data of the effect sizes of each SNP on the 118 metabolites combined with the standard error of those
SNP exposure associations (extracted from the GWAS results avaliable at http://www.computationalmedicine.
fi/data#NMR_GWAS).(1) We also use data on the SNP associations with age related macular degeneration
(AMD) from Fritsche et al 2016 (2). Finally we make use of the SNP effect sizes and standard error of these
effect sizes on LDL, HDL and Triglicerides from Global Lipids consortium (3) and the data on type 2 Diabetes
from the DIAGRAM consortium (4).

Methods

Two sample summary data MR can be conducted using summary data estimates of SNP-exposure and SNP-
outcome associations obtained from two independent but homogeneous study populations. For univariable
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summary-data MR we can link the j’th SNP outcome association to the j’th SNP exposure association via
the model;

Γj = βπj

Where πj and Γj represent the true association for SNP Gj in G with the exposure and the outcome
respectively. If the effect of each SNP on the exposure and outcome are estimated as;

x = π0 + πjGj + εx,j

and;

y = Γ0 + ΓjGj + εy,j

the Wald estimator β̂j = Γ̂j/π̂j is a consistent estimator for β. If the set of SNPs used as instruments is
uncorrelated then taking an inverse variance weighted (IVW) average of the ratio estimates will yield an
overall estimate for β

(
β̂IV W

)
.

If we wish to estimate the effect of multiple exposures on an outcome we can use MVMR in the summary
data setting to estimate the direct effect of each of the exposures included in the model on the outcome. This
estimation involves regressing the SNP-outcome association on the SNP-exposure association for each of the
exposures. For example, in the simplest case of two exposures the regression estimated is;

Γ̂j = β1γ̂1,j + β2γ̂2,j + vj

Weighted by σ̂y,j , the variance of the estimated effect of SNP j on the outcome. Γ̂j is the estimated
effect of SNP j on the outcome and γ̂1,j and γ̂2,j are the estimated effects of SNP j on exposures 1 and 2
respectively.(5,6)

The first assumption of MR analysis, that the instruments are strongly associated with the exposures, can
be tested in a univariable two-sample MR through the mean F-statistic for the effect of the SNPs on the
exposure. In a MVMR analysis it is no longer sufficient that this mean F-statistic is large but it is also
necessary that the SNPs can strongly predict each exposure conditional on the other exposures. In analysis
with individual level data this can be tested with a conditional F-statistic that tests the strength of the
association of the SNPs with each exposure given the predicted values of the other exposures in the model.(2)
We use an equivalent test for summary level data (see details in the technical appendix) to identify whether
the SNPs here can predict a group of the NMR traits and the lipd fraction traits from the Global Lipids
consortium. For each group of traits we then estimate the effect of those traits on a particular outcome,
AMD for the NMR traits and type 2 diabetes for the Global Lipid consortium traits.
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1. Analysis NMR lipid traits.

For this analysis we restrict the analysis to a limited subset of the avaliable traits. Therefore we consider the
10 traits with the largest mean F-statistic for the association between each SNP and the exposure for the
SNPs that are individually strongly associated with that trait, we define SNPs as being associated with a trait
if the individual F-statistic for that SNP-trait association is greater than 10. This restriction is equivalent to
selecting the 10 traits with the smallest mean p-value within the group of SNPs strongly associated with that
trait. From this set of traits we estimate an MVMR analysis using IVW for all 10 traits on AMD. We then
investigate the conditional F-statstics for this group of traits to determine which set can be jointly predicted
by the group of SNPs and re-estimate our MVMR analysis using only the group of traits that can be jointly
strongly predicted by the SNPs as our exposures.

2. Analysis lipid fraction traits from Global Lipids consortium and type 2 diabetes.

For this analysis we considered the effect of the three lipid fraction traits, HDL, LDL and Trigycerides on
type 2 diabetes. We again restrict the analysis to SNPs with an individual F-statistic greater than 10 for at
least one of these traits. We estimate the conditional F-statistic for each trait to determine whether they can
be strongly predicted, as a group, by the set of SNPs and then estimate the direct effect of each trait on type
2 diabetes.

For each MVMR analysis we estimate the results with and without an iteratively updated weight to account
for the error in the SNP-exposure association.(7) IVW estimation assumes that there is no uncertainty in the
SNP-exposure associations. By changing the weighting used in the analysis to account for the uncertainty in
the SNP-exposure associations we can relax this assumption and obtain more accurate estimates of the effect
of the exposures on the outcome.

Results

1. Analysis NMR lipid traits.

Table 1 gives the results from a MVMR regression of AMD on the 10 exposures with the highest individuals
F statstics in the data and simple weights. Many of the point estimates in this table are so large that it is
clear that this analysis is not reliable.

Table 2 gives the Conditional F-statistic, individial F statistic for the full set of SNPs included in the MVMR
and the individual F-staitistic for the SNPs that are strongly associated with each trait for each trait included
in the MVMR analysis. Each exposure should be considered strongly predicted in the MVMR analysis if the
conditional F-statistic is larger than the rule of thumb of 10. In this case the conditional F-statistics are all
very small showing that this groups of traits cannot be jointly strongly predicted by these SNPs.

Examining these traits more closely we see that they fall into three groups - Fatty Acids (“CH2.in.FA”
“Bis.DB.ratio” and “Bis.FA.ratio”), small HDL ( “S.HDL.P” and “S.HDL.L”) and very large HDL
(“XL.HDL.TG”, “XL.HDL.P”, “XL.HDL.PL” , “XL.HDL.FC” and “XL.HDL.L”). Tables 3 - 5 give the
conditional F statistic calculated within each group and show that it is not possible to jointly predict traits
from the same group. Table 6 gives the same results including only one exposure from each group and shows
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that once traits from different categories are included it is possible to jointly strongly predict these traits and
therefore they can all be included in an MVMR analysis.

In Table 7 we additionally included Triglycerides in very large HDL, these results show that although the
traits are now more weakly predicted each trait still has a conditional F statistic larger than 10 and so this
set of traits could be strongly predicted in a MVMR estimation.

Table 8 gives the results from a MVMR estimation of the effect of this set of traits on AMD. In Table 9
these results have been updated using an iteratively updated IVW estimation (with 4 iterations). The results
from this analysis show a potential effect of very large HDL and triglycerides in very large HDL on AMD,
conditional on small HDL and Fatty acid levels. In this example updating the weights has changed the
point estimates obtained from the analysis as there is a high level of uncertainty around the SNP exposure
associations for this set of SNPs and exposures.

Table 1. MVMR estimation of AMD on the 10 most strongly predicted NMR traits.

Estimate Std. Error t value Pr(>|t|)

CH2.in.FA -0.2342 0.4346 -0.5387 0.5967
S.HDL.P 2.7609 1.6340 1.6896 0.1084
S.HDL.L -3.4312 1.7168 -1.9986 0.0610
XL.HDL.TG -0.8570 0.3019 -2.8387 0.0109
Bis.FA.ratio 1.4840 1.1366 1.3056 0.2081
XL.HDL.P -4.7100 1.3096 -3.5966 0.0021
Bis.DB.ratio -1.3887 1.1263 -1.2329 0.2335
XL.HDL.PL -2.5502 1.5646 -1.6299 0.1205
XL.HDL.FC 2.6429 2.2429 1.1784 0.2540
XL.HDL.L 5.2654 2.8497 1.8477 0.0812

Table 2. Individual and Conditional F-statistics for the 10 MNR tratits.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

CH2.in.FA 0.413 5.319 29 91.646 1
S.HDL.P 0.075 11.993 29 91.482 3
S.HDL.L 0.069 11.817 29 69.235 4
XL.HDL.TG 0.107 29.579 29 57.791 14
Bis.FA.ratio 0.092 9.427 29 53.685 4
XL.HDL.P 0.096 17.175 29 52.634 8
Bis.DB.ratio 0.097 10.504 29 51.468 5
XL.HDL.PL 0.094 22.856 29 46.828 13
XL.HDL.FC 0.036 18.301 29 42.869 11
XL.HDL.L 0.034 19.517 29 42.300 12
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Table 3. Individual and conditional F-statistics for the Fatty Acid traits.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

CH2.in.FA 0.286 22.019 5 91.646 1
Bis.DB.ratio 0.063 51.468 5 51.468 5
Bis.FA.ratio 0.067 44.830 5 53.685 4

Table 4. Individual and conditional F-statstics for the small HDL traits.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

S.HDL.P 0.038 70.977 4 91.482 3
S.HDL.L 0.038 69.235 4 69.235 4

Table 5. Individual and conditional F-statistics for the very large HDL traits.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

XL.HDL.TG 0.120 33.567 25 57.791 14
XL.HDL.P 0.124 19.685 25 52.634 8
XL.HDL.PL 0.135 26.002 25 46.828 13
XL.HDL.FC 0.058 21.036 25 42.869 11
XL.HDL.L 0.042 22.344 25 42.300 12

Table 6. Individual and conditional F-statistics for strongest predicted trait from each group.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

Bis.DB.ratio 24.491 20.088 14 51.468 5
S.HDL.P 25.123 21.533 14 91.482 3
XL.HDL.P 33.014 32.116 14 52.634 8

Table 7. Individual and conditional F-statistics for strongest predicted trait from each group and Triglycerides
in very large HDL.

Conditional F Stat MVMR Individual F stat No of SNPs Individual F stat No of SNPs

Bis.DB.ratio 13.467 12.235 24 51.468 5
S.HDL.P 17.706 13.620 24 91.482 3
XL.HDL.P 9.656 19.455 24 52.634 8
XL.HDL.TG 11.934 34.886 24 57.791 14
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Table 8. MVMR for the effect of 4 jointly strongly predicted traits on AMD, estimated using IVW.

Estimate Std. Error t value Pr(>|t|)

Bis.DB.ratio 0.1588 0.1694 0.9375 0.3603
S.HDL.P -0.0418 0.2461 -0.1698 0.8670
XL.HDL.P 0.6725 0.3262 2.0613 0.0532
XL.HDL.TG -0.6515 0.2454 -2.6552 0.0156

Table 9. MVMR for the effect of 4 jointly strongly predicted traits on AMD, estimated using iteratively
updated IVW.

Estimate Std. Error t value Pr(>|t|)

Bis.DB.ratio 0.1941 0.1979 0.9809 0.3390
S.HDL.P 0.0310 0.2129 0.1457 0.8857
XL.HDL.P 0.6302 0.2635 2.3920 0.0273
XL.HDL.TG -0.5383 0.2320 -2.3205 0.0316

2. Analysis lipid fraction traits from Global Lipids consortium and type 2 diabetes.

Table 10 gives the individual and conditional F-statistics for the three lipid fraction traits from the Global
Lipids consortium. These results show that all three traits can be strongly preicted by this set of SNPs,
however they also highlight that even in this case the exposures are less strongly predicted jointly than they
are individually.

Table 11 gives the results for an MVMR analysis of these traits on risk of type 2 diabetes using the standard
IVW estimate and Table 12 gives results from the same analysis with iteratively updated weights to account
for the uncertianty in the SNP-exposure association. These results show that both HDL and LDL fractions
appear to have a direct negative effect on type 2 diabetes risk once the other lipid fractions have been
controlled for. In this case updating the IWV estimate does not have a large effect on the results obtained as
the SNP exposure associations are estimated more precisely than in the previous example.

Table 10. Individual and Conditional F statistics for LDL, HDL and Triglycerides.

Conditional F Stat Mean Individual F stat No of SNPs Individual F stat No of SNPs

ldl 29.898 66.526 146 127.368 75
hdl 23.434 105.895 146 166.759 92
tg 18.256 44.650 146 87.330 72
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Table 11. MVMR estimation of the effect of Lipid fractions on Type 2 Diabetes, estimated using IVW.

Estimate Std. Error t value Pr(>|t|)

hdl -0.2273 0.0766 -2.9679 0.0035
ldl -0.3150 0.0687 -4.5833 0.0000
tg 0.1144 0.1113 1.0286 0.3054

Table 12. MVMR estimation of the effect of Lipid fractions on Type 2 Diabetes, estimated using IVW with
iteratively updated weights.

Estimate Std. Error t value Pr(>|t|)

hdl -0.2229 0.0764 -2.9179 0.0041
ldl -0.3256 0.0684 -4.7568 0.0000
tg 0.1323 0.1111 1.1913 0.2355

Technical Appendix

In two-sample MVMR testing whether the SNPs can explain variation in one exposure conditional on the
other exposures has been shown elsewhere to be equivalent to testing (in an example with two exposures)
whether the model;

X1 = δ0 + δ1X2 + u1

X2 = π0 + π1G+ u2

is overidentified.(8) The analogous estimation for two-sample MR is;

π̂i,j = δ1π̂2,j + ε (1)

Overidentification in this model can be tested using a modified version of Cochran’s Q statistic;

Qx1 =
L∑

j=1

(
1

σ2
x1,j

)(
π̂i,j − δ̃π̂2,j

)2 (2)

Where σ2
x1,j

= σ2
1,j + δ̃2σ2

2,j − 2δ̃σ12,j . σ2
1,j is the variance of π̂1,j , σ2

2,j is the variance of π̂2,j , σ12,j is the
covariance of π̂1,j and π̂2,j and δ̃ is an efficient estimator of δ. We therefore propose using this test to identify
weak instruments in two-sample MVMR. Under the null hypothesis that the instruments do not contain
enough information to predict both exposure variables, Qx1 will be asymptotically χ2

L−1 distributed where L
is the number of SNPs in the estimation. Rejecting the null hypothesis indicates that the SNPs can predict
X1 conditional on X2. An equivalent Q statistic for X2 can be calculated by swapping X1 and X2 in equation
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2.

The test statistic is calculated for each test statistic individually and the instrument are relevant for the
multivariable model if all tests reject the null hypothesis. Generalising to k exposures and using matrix
notation, the vector of estimated effects of snp j on each of the exposures other than xk can be written as:
π̂−k,j = (π̂1,j . . . π̂k−1,j π̂k+1,j . . . π̂K,j)′ . The relationship between the estimated effect of the SNPs to
be tested can be generalised to;

π̂k,j = δπ̂−k,j + v

Where δ is a (K − 1) vector (δ1 . . . δk−1 δk+1 . . . δK). The Q statistic for xk can then be written as;

Qxk
=

L∑
j=1

(
1

σ2
xkj

)(
π̂k,j − δ̂π̂−k,j

)2

Where δ̂ is an efficient estimator for δ, and the variance term σ2
xkj is given by;

σ2
xk,j = δ̂∗ΣV,j(δ̂∗)′

Where δ̂∗ is the K by 1 vector (δ̂1 . . . δ̂k−1 − 1 δ̂k+1 . . . δ̂K), where δ̂k is an efficient estimator for δk.
ΣV,j is the variance covariance matrix for the estimated effect of snp j on each of the exposures, i.e.;

ΣV,j =


σ2

1,j σ12,j · · · σ1K,j

σ12,j σ2
2,j · · · σ2K,j

...
... . . . ...

σ1K,j σ2K,j · · · σ2
K,j


If each π̂kj is obtained separately via univariable regressions with an intercept, then the error terms are
obtained from the expressions:

σ2
k,j =

(
GT

j Gj

)−1

n

n∑
i=1

v̂2
ki, and σkm,j =

(
GT

j Gj

)−1

n

n∑
i=1

v̂kiv̂mi

v̂kij and v̂mij are the estimated residuals from the j’th regression for exposures k and m, k 6= m.

This Q statistic can then be converted into a F-test for weak instruments by dividing by L− (k − 1) where L
is the number of SNPs included as instruments and k is the number of exposure variables in the model. This
test can then be compared to the critical values tabulated by Stock and Yogo for 1 exposure and L− (k − 1)
instruments as we are testing the null hypothesis that the instruments explain one fewer exposures than are
included in the estimation.

This test statistic requires one piece of data that is not ususally avaliable from GWAS summary statistics
σi,j i 6= j. Throughout the analysis here we have (unrealistically) assumed this to be zero however, as the
proportion of the variance of each exposures explained by any particular SNP is small, this could be estimated
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from the phenotypic association between the exposures. Alternatively, for models with only two exposure
variables, bounds on the conditional F-statistic can be calculated based on the upper and lower limits that
the covariance term could take.
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Code

conditionalF <- function(exposures)
{

F.analysis <- data.frame(Fstat[,exposures])
ex.analysis <- data.frame(exp[,exposures])
se.analysis <- data.frame(dat_se[,exposures])

maxF_row <- apply(F.analysis,1,function(x) max(as.numeric(x)))
keep <- as.vector(as.numeric(maxF_row > 10))

F.analysis <- F.analysis*keep
F.analysis[F.analysis == 0] <- NA
F.analysis<- na.omit(F.analysis)
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ex.analysis <- ex.analysis[,1:length(exposures)]*keep
ex.analysis[ex.analysis == 0] <- NA
ex.analysis<- na.omit(ex.analysis)

se.analysis <- se.analysis[,1:length(exposures)]*keep
se.analysis[se.analysis == 0] <- NA
se.analysis<- na.omit(se.analysis)

Q <- data.frame()
F.conditional <- data.frame()
F.mean <- data.frame()

for(j in 1:length(exposures)){

F.mean <- apply(F.analysis,2,function(b) mean(as.numeric(b)))

X1 <- ex.analysis[,exposures[j]]
X2 <- data.frame(ex.analysis[,-which(names(ex.analysis) == exposures[j])])
X2 <- (matrix(unlist(X2), ncol = length(exposures)-1))

X1se <- se.analysis[,exposures[j]]
X2se <- se.analysis[,-which(names(ex.analysis) == exposures[j])]
X2se <- (matrix(unlist(X2se), ncol = length(exposures)-1))

delta <- as.vector(lm(X1~ -1 + X2)$coefficients)
vx <- X1se^2 + (X2se)^2%*%(delta^2)
Q[1,j] <- sum((1/vx)*((lm(X1~ -1 + X2)$residuals)^2))
F.conditional[1,j]<-Q[1,j]/length(X1)
no.snps <- length(X1)

}
F.conditional <- t(F.conditional)
rownames(F.conditional)<-exposures
colnames(F.conditional)<-"Conditional F"

results <- data.frame(F.conditional, F.mean, no.snps)
return(results)

}

Fstrong <- function(exposure)
{
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F.strong <- data.frame()
for(j in 1:length(exposure)){

F.analysis <- data.frame(Fstat[,exposure[j]])
keep <- as.vector(as.numeric(F.analysis> 10))
F.analysis <- F.analysis*keep
F.analysis[F.analysis == 0] <- NA
F.analysis<- na.omit(F.analysis)

F.strong[j,1] <- apply(F.analysis,2, mean)
F.strong[j,2] <- dim(F.analysis)[1]

}

row.names(F.strong) <- exposure
colnames(F.strong) <- c("F.stat", "no.snps")
return(F.strong)

}

rm(list = ls(all=TRUE))

library(data.table)
library(knitr)
library(tidyr)
library(dplyr)
library(devtools)
library(MRChallenge2019)
source("conditionalF.R")
source("Fstrong.R")

dat <- Challenge_dat
dat_se <- data.frame(read.csv("data_incse.txt"))
NMRAdat <- NMRA_dat

names <- NMRAdat$Abbreviation
colnames(dat_se) <- gsub("_", ".", colnames(dat_se))

ids <- as.vector(dat_se$rsid)
row.names(dat_se) <- ids
dat_se <- dat_se[,2:(length(names)+1)]

names <- c("ldl", "hdl", "tg", names)
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exp <- subset(dat, select=c(1,9,12,15,32:149))
pvals <- subset(dat, select=c(11,14,17,150:267))
colnames(exp) <- sub("beta_","",colnames(exp))
names(exp)[names(exp) == 'acAce'] <- 'AcAce'
colnames(pvals) <- sub("p_","",colnames(pvals))

ids <- exp$rsid
row.names(exp) <- ids
row.names(pvals) <- ids

dat_se <- data.frame(dat$se_ldl, dat$se_hdl, dat$se_tg, dat_se)
colnames(dat_se) <- gsub("dat.se_", "", colnames(dat_se))

Fstat <- data.frame()
for(x in 1:length(names)){
for(y in 1:length(ids)){

Fstat[ids[y],names[x]] <- (exp[ids[y],names[x]]/dat_se[ids[y],names[x]])^2

}
}

F.ind <- Fstrong(names[4:length(names)])
F.ind <- F.ind[order(-F.ind$F.stat),]
topexp <- row.names(F.ind[1:10,])

F.MR <- data.frame(Fstat[,topexp])
ex.MR <- data.frame(exp[,topexp])

maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x)))
keep <- as.vector(as.numeric(maxF_row > 10))

ex.MR <- ex.MR[,1:length(topexp)]*keep
ex.MR[ex.MR == 0] <- NA

MR.all <- (summary(lm(dat$beta_amd~ -1 + ., data = ex.MR,
weights = (dat$se_amd)^2)))$coefficients

b<- Fstrong(topexp)
c <- conditionalF(topexp)
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Ftop <- data.frame(c, b)
colnames(Ftop)[4] <- "Ind.F.Stat"
colnames(Ftop)[5] <- "No.snps.Ind"

a <- c("CH2.in.FA", "Bis.DB.ratio", "Bis.FA.ratio")
b <- c( "S.HDL.P", "S.HDL.L")
c <- c("XL.HDL.TG", "XL.HDL.P", "XL.HDL.PL" , "XL.HDL.FC", "XL.HDL.L" )

FAstrong<- Fstrong(a)
FAcond <- conditionalF(a)
F.FA <- data.frame(FAcond,FAstrong)
S.HDLstrong<- Fstrong(b)
S.HDLcond <- conditionalF(b)
F.S.HDL <- data.frame(S.HDLcond,S.HDLstrong)
XL.HDLstrong<- Fstrong(c)
XL.HDLcond <- conditionalF(c)
F.XL.HDL <- data.frame(XL.HDLcond,XL.HDLstrong)

d <- conditionalF(c("Bis.DB.ratio", "S.HDL.P", "XL.HDL.P"))
e <- Fstrong(c("Bis.DB.ratio", "S.HDL.P", "XL.HDL.P"))
Fsub <- data.frame(d, e)

f <- conditionalF(c("Bis.DB.ratio", "S.HDL.P", "XL.HDL.P", "XL.HDL.TG"))
g <- Fstrong(c("Bis.DB.ratio", "S.HDL.P", "XL.HDL.P", "XL.HDL.TG"))
Fsub2 <- data.frame(f, g)

subexp <- c("Bis.DB.ratio", "S.HDL.P", "XL.HDL.P", "XL.HDL.TG")
F.MR <- data.frame(Fstat[,subexp])
ex.MR <- data.frame(exp[,subexp])
maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x)))
keep <- as.vector(as.numeric(maxF_row > 10))
ex.MR <- ex.MR[,1:length(subexp)]*keep
ex.MR[ex.MR == 0] <- NA

MR.subset <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR,
weights = (dat$se_amd)^-2))$coefficients

weight = (dat$se_amd)^-1 + ((MR.subset[1,1]^2)*(dat_se$Bis.DB.ratio^2))^(-1/2)
+ ((MR.subset[2,1]^2)*(dat_se$S.HDL.P^2))^(-1/2) +

((MR.subset[3,1]^2)*(dat_se$XL.HDL.P^2))^(-1/2) +
((MR.subset[4,1]^2)*(dat_se$XL.HDL.TG^2))^(-1/2)

MR.subsetup <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR,
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weights = weight))$coefficients
weight = (dat$se_amd)^-1 + ((MR.subsetup[1,1]^2)*(dat_se$Bis.DB.ratio^2))^(-1/2) +

((MR.subsetup[2,1]^2)*(dat_se$S.HDL.P^2))^(-1/2) +
((MR.subsetup[3,1]^2)*(dat_se$XL.HDL.P^2))^(-1/2) +
((MR.subsetup[4,1]^2)*(dat_se$XL.HDL.TG^2))^(-1/2)

MR.subsetup <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR,
weights = weight))$coefficients

weight = (dat$se_amd)^-1 + ((MR.subsetup[1,1]^2)*(dat_se$Bis.DB.ratio^2))^(-1/2) +
((MR.subsetup[2,1]^2)*(dat_se$S.HDL.P^2))^(-1/2) +
((MR.subsetup[3,1]^2)*(dat_se$XL.HDL.P^2))^(-1/2) +
((MR.subsetup[4,1]^2)*(dat_se$XL.HDL.TG^2))^(-1/2)

MR.subsetup <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR, weights = weight))$coefficients

exposures <-c("ldl", "hdl", "tg")
a<- Fstrong(exposures)
b <- conditionalF(exposures)
Fchol <- data.frame(b, a)
HDL <- dat$beta_hdl
LDL <- dat$beta_ldl
TG <- dat$beta_tg

glc.exp <- c("hdl", "ldl", "tg")
F.MR <- data.frame(Fstat[,glc.exp])
ex.MR <- data.frame(exp[,glc.exp])
maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x)))
keep <- as.vector(as.numeric(maxF_row > 10))
ex.MR <- ex.MR[,1:length(glc.exp)]*keep
ex.MR[ex.MR == 0] <- NA

MR.results <- (summary(lm(dat$beta_t2d ~ -1 + ., data = ex.MR,
weight = (dat$se_t2d)^-1)))$coefficients

weight = (dat$se_t2d)^-1 + ((MR.results[1,1]^2)*(dat$se_hdl^2))^(-1/2) +
((MR.results[2,1]^2)*(dat$se_ldl^2))^(-1/2) +

((MR.results[3,1]^2)*(dat$se_tg^2))^(-1/2)

MR.resultsup <- (summary(lm(dat$beta_t2d ~ -1 + ., data=ex.MR,
weight = weight)))$coefficients
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